• APSEd

Design of Bolted Connections | Concept and Formulas with Example

Bolted connections are a type of structural joint used to join two or more structural components in a steel structure using bolts. Bolts are a form of threaded fasteners which has a male thread and preformed matching female thread, such as nuts. Concepts of bolt value, the strength of bolted joints are important to design a bolted connection, and the same are discussed further.


Types of Joints in Bolted Connections


There are two predominant types of joints in a bolted connection namely, lap joint and butt joint. There are sub-types within these two types i.e., eccentric connections, pure moment connections etc. but are beyond the scope of this blog. The nature of the joints and sub-types within these joints are explained as follows.


1. Lap Joint


In a lap joint, the main members to be connected are placed over one another to form an overlap between the members, and then the bolting is done on the overlapped portion. Because of the very nature of the connection, an eccentricity is produced.


Lap joint
Lap joint

2. Butt Joint


In this type of joint, a cover plate is used to join two members. Based on the number of cover plates there are two types of butt joint namely, single cover butt joint and double cover butt joint.


Butt joint types
Butt joint types

To know a little more about bolts, types of bolts, other different types of butt and lap joints click here.


Most Preferred Joint in a Bolted Connection


Out of all the above-mentioned joints, the double cover butt joint is the most preferred for the following reasons.

  • The shear capacity of the bolt is more than in a lap joint

  • No eccentricity is present in the connection


Types of Failure in Bolted Connections


In a bolted connection either the connecting plate might fail or the bolt might fail. Therefore, it becomes important to consider the "Limit States" or failure modes of both bolt and the plate. Possible limit states by which a bolted connection might fail are mentioned below.


Failure Modes of Bolts in a Bolted Connection

  • Shear Failure of Bolts

  • Bearing Failure of Bolts

  • Tensile Failure of Bolts


Failure Modes of Plate in a Bolted Connection

  • Shear Failure of Plate

  • Bearing Failure of Plate

  • Tensile Failure of Plate


1. Shear Failure of Bolts


As the name suggests, this failure occurs due to shear force at the interface of surfaces in a joint. Depending on the number of shear surfaces there are two types of shear failure that could occur in a bolted connection, namely, the single shear failure and double shear failure.


Single Shear Failure

Here, the bolt is subjected to a single shear force which could cause the failure of the bolt. This type of failure occurs in single cover butt joint and lap joint.


Single shear failure of bolt in a lap joint
Single shear failure of bolt in a lap joint

Double Shear Failure


Here, the bolt is subjected to two shear forces at two separate shear planes. This type of failure occurs in the double cover butt joint.


Double shear failure of bolt in double cover butt joint
Double shear failure of bolt in double cover butt joint

2. Bearing Failure of Bolts


In this failure, the bolt fails in bearing due to contact with the plates. This type of failure occurs in cases where a low-strength bolt is used with a plate of very high grade, which usually doesn't occur in practice.


Bearing failure of bolt
Bearing failure of bolt

3. Tensile Failure of Bolts


The tensile strength of the bolt is the amount of pull the bolt can withstand in the perpendicular direction to the plane of loading. If the pull on this perpendicular axis exceeds the tensile strength of the bolt, then the bolt will fail in tension.


Tensile failure of bolt
Tensile failure of bolt


4. Shear Failure of Plate


Shear failure of plate
Shear failure of plate

5. Bearing Failure of Plate



Both shear and bearing failure of the plate can be avoided by providing sufficient centre to centre distances between the bolts as mentioned in section 10 of IS 800: 2007.


6. Tension Failure of Plate


Due to a reduction in the net area (i.e., due to bolt holes) of the plate along the bolt line, the tensile strength of the plate will be lesser than the actual value at this section. Because of this, the plate might fail under tension. Therefore, it becomes important to calculate the least net area among different bolt lines to find the least tensile strength of the plate and check it for safety for the applied load.


Tensile failure of plate
Tensile failure of plate


Assumptions in Designing a Bolted Connection

  • All bolts in a connection are stressed equally

  • Friction between the plates in a connection is neglected

  • The shear stress distribution is uniform for the bolt

  • The bearing stress distribution is uniform for the bolt

  • The bending of the bolt is neglected in case of smaller grip length, in case of larger grip lengths reduction factors must be considered for bending of the bolt


Basic Terminologies in Designing a Bolted Connection


  • Pitch distance (p) - centre to centre distance between two adjacent bolt holes in the direction of the applied load

  • Gauge distance (g) - centre to centre distance between two adjacent bolt holes in the perpendicular direction of the applied load

  • Edge distance (e) - the distance between the edge of the plate to the nearest centerline of a bolt hole in the perpendicular direction to the applied load

  • End distance (e') - the distance between the end of the plate to the nearest centerline of the bolt hole in the direction of the applied load

Terminologies used in a bolted connection
Terminologies used in a bolted connection

For detailed specifications regarding all the above-mentioned terms refer to IS 800: 2007, Section 10 Connections.


Design Strength of Bolts


Black bolts are the least expensive bolts available and are also called ordinary, unfinished, or common bolts. They are primarily used in light structures under static loading such as small trusses, bracings, etc.


Grade of a Bolt


The grade of a bolt indicates the properties of the bolt such as nominal ultimate tensile strength, and yield strength. It varies from 4.6 to 10.9. Generally, a bolt of grade 4.6 is used in construction. A grade of 4.6 means, 4 indicates 1/100 the of the nominal ultimate tensile strength of the bolt in N/mm^2, and 0.6 indicates that the yield strength of the bolt is 60% of the ultimate tensile strength of the bolt. Thus a bolt with grade 4.6 has an ultimate tensile strength of 400 N/mm^2 and a yield strength of 240 N/mm^2. The same is indicated in the picture below.


Ultimate and yield strength of bolt
Ultimate and yield strength of bolt

1. Bearing Capacity of the Bolt


As per IS 800: 2007, the Design Bearing Strength of the Bolt (Vdpb) is given by,


Vdpb = Vnpb/γmb,

where,

γmb - partial safety factor;

Vnpb = Nominal Bearing Strength of the Bolt = 2.5 * Kb * d * t * fu;

d - nominal diameter of the bolt;

t - the sum of the thickness of the connected plates experiencing bearing stress in the same direction;

fu - ultimate tensile strength of the plate (i.e., for Fe410, fu=410N/mm^2);

Kb - smaller of the following values:

  • e/(3 * do),